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ABSTRACT: This paper deals with numerical method for the approximate solution of one-dimensional

heat equation with integral boundary conditions. The integral conditions are

approximated by using Simpson’s 1/3 rule while the space derivatives are approximated by third-order
finite difference approximations. Then method of lines, semidiscritization approach, is used to transform
the model partial differential equation into a system of first-order linear ordinary differential equations
whose solution satisfies a recurrence relation involving matrix exponential function. The method developed
is L-acceptable, third-order accurate in space and time and do not require the use of complex arithmetic. A
parallel algorithm is also developed and implemented on several problems from literature and found to be
highly accurate when compared with the exact ones and alternative techniques.
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1 INTRODUCTION
In this paper we have considered the one-dimension heat

equation with non-local boundary conditions. Much
attention has been paid in the literature for the
development, analysis and implementation of accurate
methods for the numerical solution of this problem.
Consider heat equation

                  (1)

 subject to the given initial condition

 and the non-local boundary conditions

where  and  are known functions and
are assumed to be sufficiently smooth to produce a
smooth classical solution of .  is given positive
constant. A number of numerical procedures are
suggested in the literature to address the problem: see, for
instant [2, 3, 5, 6, 9, 12].
Inspiring from great accuracy achieved in [11] the authors
aim to attempt this problem. In this paper the method of
lines, semi discretization approach, will be used to
transform the model partial differential equation (PDE)
into a system of first-order, linear, ordinary differential
equations (ODEs), the solution of which satisfies a
recurrence relation involving matrix exponential terms. A
third-order rational approximation will be used to
approximate exponential functions which will lead to an

-acceptable algorithm which may be parallelized through
the partial fraction splitting technique.
2 DISCRETIZATION AND TREATMENT OF THE
NON-LOCAL BOUNDARY CONDITIONS
Dividing the interval  into  subintervals each
of width , so that  and the time variable

into time steps each of length  gives a rectangular mesh
of points with co-ordinates  where
(m = 0, 1, 2, ..., N+1 and n = 0, 1, 2, ...) covering the
region  and its boundary
consisting of lines x = 0, x = 1 and t=0.
The space derivative in (1) may be approximated to the
third-order accuracy at some general point (x, t) of the
mesh by using five point central difference
approximations.

   (5)

also used by [1, 5, 11]
 It is worth noting that the equation (5) is valid only for

  with  To

attain the same accuracy at the points  for

 and  , special formulae developed by [11] are

used, which approximate   not only to third-order

but also with dominant error term for

 and . Such approximations are

                          (6)

and



ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),24(1),1-6,20112

                          (7)

for the mesh points  and  respectively.
Applying (1) with (5), (6) and (7) to all the interior mesh
points of the grid at time level  produces a system
of N linear equations in N+2 unknowns U₀, U₁,..., UN+1.
The integrals in (3) and (4) are approximated by using

Simpson's  rule as used by [6, 7, 8].  Here

                                (8)

and

(9)

 where N is an odd integer. Solving (8) and (9) for U₀
and UN+1 and substituting these values in the above
system we have a system of N linear ordinary differential
equations with N unknowns U₁, ..., UN which can be
written in vector matrix form as

                                   (10)

 with initial distribution
                                                                       (11)

 in which U(t)=[U₁(t), U₂(t), ..., UN(t)]T  and f= [f(x₁),
f(x₂), ..., f(xN)]T, where T denoting the transpose and
matrix A of order N×N which is given by

where

in which

and

Here

 also  and .  The column

vector v(t) contains the contribution from the functions
q(x,t), g₁(t) and g₂(t) and is given as

 (12)

 where   and

The solution of the system (10) subject to (11) is given by
        (13)

which satisfies the recurrence relation

                                               (14)

Eigen-values of the matrix A are calculated using
MATLAB for N=9, 19, 39, 79 and it is observed that they
are distinct negative real ones or complex with negative
real parts.
To approximate the matrix exponential in (14) following
[11] we use a rational approximation given by

                                (15)

 is a real scalar. The coefficients and  and are real
and interlinked as  and

. So we have
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       (16)

where

        (17)

 The quadrature term in (14) is approximated as

                    (18)

where and W₁, W₂, W₃
are matrices given by [11] and are mentioned here for
convenience.

                      (19)

               (20)

(21)
Hence

                                                 (22)
3 NUMERICAL EXPERIMENTS
In this section the numerical method will be applied to a
problem from the literature and results obtained will be
compared with exact solution as well as with the results
existing in the literature. Following [11] we have chosen

here  and as produced in [10]

which gives . It is found that r₁
=2.35913888475789, r₂ = 2.34684670205017 and r₃
=2.17953792391154 are the real zeros of  for this
choice. For this choice of values L-stability is also
guaranteed.
Example (1):- Consider the problem (1)-(4) with

which has theoretical solution

The problem is solved using the scheme developed in this
paper for h = l = 0.05, 0.025, 0.01, 0.005, 0.0025, 0.001
at
x = 0.6 and t =1. The relative errors obtained by this
scheme are given in Table 1 and the results are compared

with different schemes, BTCS implicit scheme, Crandall
method, FTCS scheme and Dufort-Frankel scheme given
by [7]. From the table we can see that the results of the
new scheme are far better than those of the schemes given
in [7].
Example (2):- Now consider the problem (1)-(4) with

where  and

which has theoretical solution
   [7].

 For Example (2) results are given in Table 2 and Table 3.
In Table 2 the results are computed for h = l = 0.05,
0.025, 0.01, 0.005, 0.0025, 0.001 at x = 0.6 and t = 0.1.
The relative errors developed in the scheme are compared
with different schemes, BTCS implicit scheme, Crandall
method, FTCS scheme and Dufort-Frankel scheme given
by [7]. From the table it is clear that the results are in
good agreement as compared with the exact ones as well
as better than other schemes. Moreover the new scheme is
third-order accurate except for very small values of h and
l where accumulating error is high.
    The example (2) is also solved for h=l=0.01 for
different values of t at x=0.25 and the results are
presented in Table 3. Table 3 shows that the scheme
developed in this paper gives superior results to those
computed by using the Crank-Nicolson finite-difference
method [12], the implicit finite-difference technique and
the parallel techniques [6]. The parallel technique
developed in [6] is second-order accurate while the
parallel technique developed in this paper is third-order
accurate.
Example (3):- Again consider the problem (1)-(4) with

which has theoretical solution
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Table 1: Relative errors at various spatial lengths at t =1 for Example (1)

Spatial
length

BTCS Crandall FTCS Dufort-
Frankel

New Scheme

Table 2: Relative errors at various spatial lengths at t =1 for Example (2)

Spatial
length

BTCS Crandall FTCS Dufort-
Frankel

New Scheme

Table 3: Results for u at different values of t  for Example (2)

T Exact u Error
Crank-

Nicolson

The implicit The parallel New Scheme

0.1 0.7048055

0.2 0.6384772

0.3 0.5795403

0.4 0.5275993

0.5 0.4821859

0.6 0.4427977

0.7 0.4089274

0.8 0.3800867

0.9 0.3558213

1.0 0.3357223

Table 4: Results for  at  for Example (3)

T Exact Solution Numerical solution Absolute Error
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Table 5: Results for different Spatial lengths at t =1 for
Example (3)

Spatial
length H

Absolute Errors at Absolute Errors at CPU Time in seconds

0.10000 0.0310
0.05000 0.0320
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0.02500 0.2040
0.01250 1.0300
0.00625 6.9800
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Table 5: Results for different Spatial lengths at t =1 for
Example (3)

Spatial
length H

Absolute Errors at Absolute Errors at CPU Time in seconds

0.10000 0.0310
0.05000 0.0320
0.02500 0.2040
0.01250 1.0300
0.00625 6.9800

 where  =0.0144 [4, 9].

In Example (3) results computed are given in Table 4 and
Table 5. In Table 4 results are calculated for h = 0.01 = l
at x = 1 and for different values of t. From the table it is
clear that the analytical solution calculated by using the
scheme developed in this paper is good agreement with
the exact ones. Also the solution converges towards exact
solution as t increases.
In Table 5 results are given for t = 1 with h = l = 0.1,
0.05, 0.025, 0.0125 and 0.00625 at x = 0.5 and x = 1. It is
clear from the table that results for x = 1 are far better
than those at x = 0.5 also the method is third-order
accurate. CPU time taken for the new scheme developed
in this paper is also given in the table which shows that
the new scheme is very fast.
This problem is also solved by [2] with  and

. It is noted that the increase in the value of
causes more accuracy.

4 CONCLUSION
  It is observed that the results obtained using new scheme
are highly accurate as compared to those of other schemes
and the method developed is third-order accurate in space
and time as well as L-acceptable. This technique can be
coded easily on serial or parallel computers.
 It is worth mentioning that the method using real
arithmetic and multiprocessor architecture especially in
multi-dimensional problems will save remarkable CPU
time rather than the complex arithmetic based methods.
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