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ABSTRACT: This paper deals with numerical method for the approximate solution of one-dimensional

Sme

heat equation —“ =—+ g(x.t} with integral boundary conditions. The integral conditions are

approximated by using Simpson’s 1/3 rule while the space derivatives are approximated by third-order
finite difference approximations. Then method of lines, semidiscritization approach, is used to transform
the model partial differential equation into a system of first-order linear ordinary differential equations
whose solution satisfies a recurrence relation involving matrix exponential function. The method devel oped
is L-acceptable, third-order accurate in space and time and do not require the use of complex arithmetic. A
parallel algorithmis also developed and implemented on several problems from literature and found to be
highly accurate when compared with the exact ones and alter native techniques.
Keywords: Heat equation, Boundary integral specifications, Third order numerical methods, Method of
lines, Parallel algorithm

1 INTRODUCTION

In this paper we have considered the one-dimension heat
equation with non-local boundary conditions. Much
attention has been paid in the literature for the
development, analysis and implementation of accurate
methods for the numerical solution of this problem.
Consider heat equation

—=—=+qxt), 0<x<l,0<t=T ()
subject to the given initial condition
x.0)=f(x), 0=xx<l 2)

and the non-local boundary conditions

ul0.9) = f olxdux.t)dx +5,(&). 0<t=<T (3)

ull.t) = f ¥(x. t) ulx, tHdx + g, (0, D<t<T (&)

where f. 5., -, @. ¥ and g are known functions and
are assumed to be sufficiently smooth to produce a
smooth classical solution of u. T is given positive
constant. A number of numerical procedures are
suggested in the literature to address the problem: see, for
instant [2, 3, 5, 6, 9, 12].

Inspiring from great accuracy achieved in [11] the authors
aim to attempt this problem. In this paper the method of
lines, semi discretization approach, will be used to
transform the model partial differential equation (PDE)
into a system of first-order, linear, ordinary differential
equations (ODEs), the solution of which satisfies a
recurrence relation involving matrix exponential terms. A
third-order rational approximation will be used to
approximate exponential functions which will lead to an
L-acceptable algorithm which may be parallelized through
the partial fraction splitting technique.

2 DISCRETIZATION AND TREATMENT OF THE

NON-LOCAL BOUNDARY CONDITIONS
Dividing the interval [0.1] into &\ + 1 subintervals each
of width iz, sothat (¥ = 1}k = 1 andthetimevariablet

into time steps each of length ! gives a rectangular mesh
of points with co-ordinates (x,.. t,) = (ma.nl | where
(m=0,1,2 .,N+landn= 0,1, 2, ..) covering the
region 8 = 0 < x = 1] x [t = 0] and its boundary &7
consisting of linesx = 0, x = 1 and t=0.

The space derivative in (1) may be approximated to the
third-order accuracy at some genera point (x, t) of the

mesh by using five point central difference
approximations.
- = = {l1lu(x—-h.t)— 20u(xt
dx 12"
+6ulx +ht) +4ux + 2ht
—ux+ 30} s =55+ 00*) (5

alsoused by [1, 5, 11]

It is worth noting that the equation (5) is valid only for
x. 8 = (s & with m = 1.2,3.,..N=-2. To
attain the same accuracy at the points (x.. t.1 for
i=N-=1and N, specia formulae developed by [11] are

used, which approximate not only to third-order

[

but also with dominant error term —=——— for
® = ®y...%y and T = T, Such approximations are
Fulx,¢ 1
— =—— {ulx - 3h.t) - 6ulx — 2h t) + 26ulx —h.t) —40u
g1 12 h
+21 +3h,t) = 2u(x = 2h.t
S22 oY ©)
and
Fu(.e ‘ .
———=——{2ulx=4ht! =11{x=3h.t) = 4ulx = 2h '
ox

Xt
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Byag ==ty +11 Byeg = =Nyag =20,
Giar==n,_. =65, ==-n. =4
—10ulx.t) + Qux +h.t)} g.= for 1<iEN=-4
Vams ==2 My + 1 -y = =20y :—E
2% 35,0p X ag ==2Nyoy +2E,
__:_! + 0 (h*) (M e = =2, . =420 ==2n, =21
for the mesh points (xy_:.&.) and (xy &) respectively. inwhich
Applying (D) Wi_th (5)_, (6) and (7) to al the interior mesh 4»3;:(*,‘,: - c.¥)
points of the grid at time level ¢ = ¢, produces a system For i =1.3,5 \
of N linear equations in N+2 unknowns Uo, Ua.,..., Uns1. = ) = T e
The integrals in (3) and (4) are approximated by using 3%;_:5-.59: -c.¥)
Simpson's = rule as used by [6, 7, 8]. Here YT for i=246..N-1
i %4 2*3
: 5 and
u(0.2) == (olo.dult =+ -T o 2i=Dheu(i2i=1ho h
3 - { 4§ (cq9;: — ¢, ¥ B
for i =135...N
5 _ €203 = C1Cy
22 Y ofzihouihg = u(iN + Uho} = l i
s 27(Cspi— 4 ¥
- for i=246..N-1
“g.fal+ o0h (8) €a€3 = Cyby
and Here
. — c;=1__:4;,.;;,C:z_;z.,-:;.._;.f-=--:?“§‘: and ¢y =
i(11) =§' (& 0clullx --,".-— S2i=-1hodu2i=- 1he Coa . ‘ !
_\_ aso ¢ =e@(ih.t) and ¥, =¥ (th.t]. The column
2, TERhIh +aliNe DR vector v(t) contains the contribution from the functions
I - ) a(x.t), ga.(t) and g=(t) and isgiven as
E Rt ok G

where N is an odd integer. Solving (8) and (9) for Uo
and Uyn:; and substituting these values in the above
system we have a system of N linear ordinary differential

equations with N unknowns U4, ..., Uy which can be
vyritten in vector matrix form as

:;-_‘ =AU +v(t), t>0 (10
with initial distribution

U =f (11)
in which U(t)=[U4.(t), U=(t), ..., Ux(®)] " and f= [f(xa),
f(x=), ..., f(x)]", where T denoting the transpose and

matrix A of order Nx N which is given by

- o o o [ “ﬁ e ﬁm _H
1 4 ¢ ¢ 3
n D 6 4 4
1 1 0 6 4 4
Pp— 1 0 6 4 A
2 '.l ‘n.' ‘n.' = =
12h I @ 6 & 4
A P A A E KT 1 Pn
£ I T T T w N
where
g, =11 =20, a, = lim* =6 a.=lim+4 a, =1im—- 1

v =t ey Ty e T
Q.'\'- il ]‘
(12)
N . £4§2(l)=0384 (1
7 o rayulilmizgE [ | = i
wherety =—_ - and ‘2 .
RgLg=tzij o L e |

The solution of the system (10) subject to (11) is given by
Ult) =exp(td) f+ |, expllt — s)Alv(dds, (13)
which satisfies the recurrence relation

Ut +1) = exptA)UG) = f explt+1=-slalv(slds
t=0L2L .. (14)
Eigen-values of the matrix A are calculated using
MATLAB for N=9, 19, 39, 79 and it is observed that they
are distinct negative real ones or complex with negative
real parts.
To approximate the matrix exponentia in (14) following
[11] we use arational approximation given by
; {l_‘..:ﬁ:. - - I:,

) ee—e—m————— = —
T denden® ) (15)
& isarea scalar. The coefficients and 3; and &; are real
andinterlinkedas 6. =1 = a:. bz === a:+ a: and

Qy = -é——"— a-. So we have

=
L |
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explld) =6~ I+ (1—a ld+(2 =g, = a: | FATY (16 with different schemes, BTCS implicit scheme, Crandall
' } T method, FTCS scheme and Dufort-Frankel scheme given
where by [7]. From the table we can see that the results of the
G=l-gld+a.lPE-C-2cg 38 (17) new scheme are far better than those of the schemes given

& v

The quadrature term in (14) is approximated as

+Wiv(s:) (18)

wheres, =t s.= t+-, s:= t+landWq, W2, W3

are matrices given by [-11] and are mentioned here for
convenience.

W, =< {1+ (4 -9, + 124,146 19
W, = %U —(1 —3a, + 6a.)l4}G* (20)
W ='|lif+(3 =g, 4 e, )4 +(1- 30, 4

6%)41"2}{;4

(21)
Hence
U +0 :exp[iA)U[t}M;;{z}w!ﬂ[tﬁj,l
pi+])
(22)

3 NUMERICAL EXPERIMENTS

In this section the numerical method will be applied to a
problem from the literature and results obtained will be
compared with exact solution as well as with the results
existing in the literature. Following [11] we have chosen

here @, == and a: = - =22 a5 produced in [10]

iiiii
e

which gives a; = It is found that ra

=2.35913888475789, r= = 2.34684670205017 and r=
=2.17953792391154 are the real zeros of g (&) for this
choice. For this choice of values L-stability is aso
guaranteed.

Example (1):- Consider the problem (1)-(4) with

flx) =x=, D=x<1,

| — N = * =

it =
3
gt =——m— et <
g- e+l U . 1
plx.t)=x 0<cx<1
¥(r.t)=x, 0xx<1,
g : - T
. =—2(X*+T+1) . .
qlx ti:_—__ 0 < :E‘_C-::' x<l

which has theoretical solution ulx.t) = (— *

The problem is solved using the scheme developed in this
paper for h = | = 0.05, 0.025, 0.01, 0.005, 0.0025, 0.001
at

X = 0.6 and t =1. The relative errors obtained by this

scheme are given in Table 1 and the results are compared

in[7].
Example (2):- Now consider the problem (1)-(4) with

flx) =expl—x}. 0<x<1
g.lt) =0, 0« <1,
g-ltl =0 0<t <1
olx.t)=gx, 0<x<1
¥Y(x.t)=bcosx., O x <1
glx.t) = —exp[-(x+sint)] (1 +cost), 0<t <1l
Ij = X 1
- .

- — Jg = =
where @ = (e =2 and b = 'sin(1) — cos(l) + ¢
which has theoretical solution
ulx,t) =exp (=lx +sinth) [7].
For Example (2) results are given in Table 2 and Table 3.
In Table 2 the results are computed for h = | = 0.05,

0.025, 0.01, 0.005, 0.0025, 0.001 at x = 0.6 and t = 0.1.
The relative errors developed in the scheme are compared
with different schemes, BTCS implicit scheme, Crandall
method, FTCS scheme and Dufort-Frankel scheme given
by [7]. From the table it is clear that the results are in
good agreement as compared with the exact ones as well
as better than other schemes. Moreover the new schemeis
third-order accurate except for very small values of h and
| where accumulating error is high.

The example (2) is also solved for h=I=0.01 for
different values of t at x=0.25 and the results are
presented in Table 3. Table 3 shows that the scheme
developed in this paper gives superior results to those
computed by using the Crank-Nicolson finite-difference
method [12], the implicit finite-difference technique and
the paralel techniques [6]. The paralel technique
developed in [6] is second-order accurate while the
paralel technique developed in this paper is third-order
accurate.

Example (3):- Again consider the problem (1)-(4) with

Y]

Y Ll A .
fxl=xix-1l+———, 0<x <1,
: Clli+—0)
- | ] - - - .
g \2 = Dt}
- | =1 Ne = 9
g\t 0 & 1
plx.tl==G5, D<x<1l
T ) = £ A e e 4
Tix.ti==0,. U<x<1,

which has theoretical solution
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Table 1: Relative errors at various spatia lengths at t =1 for Example (1)

Spatia BTCS Crandall FTCS Dufort- New Scheme
length Frankel
h=00300 | 73x107 3.8X 107 7Ex107 7BX 107+ 1.7 %107
h=0.0250 18x 10" 21X 107 19x10°% 19x10°% 28 %10™™
h=00100 | 44x107 12X 107" 40X 107 3exip7™ 1EX107
h=0.0050 | 12x107 7.1x 107 1.0 X107 1.0 X107 2.1 %1077
h=0.0025 | 3.0x10"™ 43X 107" 25 %107 24x107 6.0 x 10™*
=0.0010 | 7Ex107° 2Ex 107 €1x107* €0 x 107 33Ix107"

Table 2: Relative errors at various spatial lengths at t

=1 for Example (2)

Spatial
length

BTCS

Crandall

FTCS

Dufort- New Scheme

Frankel

n=0.0500 E3X107F 35X 107 E4X107% BEx 107% | 8817 X10°F
h=0.0250 1.5 % 10" 24% 107 16107 L7 %107 13Ix10"
A=00100 | 40x10°% 15x 10™® 4.1 % 10°% 4.1 % 10°% g9x107
n= 00030 10X 107 L0 x 10~ 10X 107 10X 107 29X 107
A= 0.0025 2.4%107% cE4x 107 2.5 %107 26%107% 2.5 %107
A=00010 | &€1x10” 40X 10°%° 40 %107 39 x 107 2.1 %10™

Table 3: Resultsfor u at different valuesof t for Example (2)

Exactu

Error
Crank-
Nicolson

Theimplicit | The paralel

New Scheme

0.1 | 0.7048055 | 6.0x 107 | 5.2x 107 | 3.8x 107F 6.1x 107"
0206384772 | 5.2x 107" | 4.1x 107 | 3.7x 107°° 1.3x 1077
03[ 05795403 | 6.7x 107" | 7.1 1077 | 3.6x10°¢ 2.0x 10~
0.4 | 05275993 | 8.0x 107" | 6.4x 107°° | 5.3x 107 2.8x 107"
0504821859 | 1.2x 107" | B.ox 1077 | 2.3x 107 3.6x 107
0.6 | 04427977 | 1.1x 107 | 28x 107°% | L.0x 107 4.5x 107"
0.7 | 04089274 | 2.5x 107 | 1.4x 107 | 1.1x 107" 5:5x 10~
0.8 [ 0.3800867 | 2.8x 10~°F | 2.6x 107" | 1.0x 10~°¢ 6.5x 10°7F
09]03558213 | 5.8% 107" | 4.4 107% | 2.1x 107" 7.6% 10-°°
1.0 | 03357223 | 7.1 107°F | 6.4x 107%F | 1.8 107 8.7 x 107"

Table 4: Resultsfor 7 = .01at x = 1 for Example (3)

Exact Solution

Numerical solution

Absolute Error

0.1 =0.006817107%0377 =0.00681710779772 LOE X 107
0.2 -0.00€16837431412 =0.00616837418€7¢ 127X 10"
03 —0.0055813758E787 =0.0055813757€10 127 %107%
0.4 =0.00:020237747%7 =0 00E02023762l8E L19x 107

0.5 =0.004565€440838% =0.00455€43574€ 109 % 10™
0.6 —0.004135778485+21 =0.004213278<85277 984 x 107
0.7 =0.00374130815211 =0.0037+130805152 9.02 X107
0.8 =0.00338527559937 =0.003385275517€8 B17 X107

0.9 =0.003063124032€8 =0.00306312395874 7.39 % 107
1.0 =0.002771€292408¢ =0.002771629173594 6ES X 107

Table 5: Resultsfor different Spatial lengths at t =1 for

Example (3)

Spatial
length H

Absolute Errors at

Absolute Errors at
x=1.0

CPU Timein seconds

0.10000

1.79x 10~™

0.0310

0.05000

2.65x10°°F

0.0320
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0.02500 283x 10~ 3.66x10~" 0.2040
0.01250 1.70x10°5 48Bx10°7 1.0300
0.00625 8.94x 10 = 6.83x10°F 6.9800

Table 1: Relative errors at various spatia lengths at t =1 for Example (1)

Spatia BTCS Crandall FTCS Dufort- New Scheme

length Frankel
R=00500 | 73x10°% L8 % 16 7EX10°9 7EX10°9 L7%10™
A=00250 | IBx107% 21X 107 19X 107 19X 107 23X 107F
h=00100 | <44x107F L2 X 107 40 x 107 3.9 x10°F 16x10°°
A=00050 | 12x10°% 7AixX 10°% 1.0 x 107 1.0 x 107 2.1 %10
h = 0.0025 3.0x 107" 43x107% 25 x107 24107 &0 x 107
A=00010 | 7Ex107% 25X 107 e1x107% €0 x 107% 3.3X10°%

Table 2: Relative errors at various spatial lengths at t

=1 for Example (2)

Spatial BTCS Crandall FTCS Dufort- New Scheme
Iength Frankel
=0.0500 | €3x10°% 39X 107 €4 x 107 68X 1075 | 8917 x 10"
= 0.0250 1LEx 107" 24x107° 1Ex 107" 17 X107 13X
R=00100 | 20x107% 15 x 107 1X107 1X107 g8X107"
h = 0.0050 10 x10"= 10X 107 10 x10"= 10 x10"= 49 %107+
h=00025 | 24x107™ 64x 107" 25 %107 26x107 25 %107
A=00010 | €1x107% 20x 107" FOx 107 3Fx107™ Z.1X107™

Table 3: Resultsfor u at different valuesof t for Example (2)

Exact u

Error
Crank-
Nicolson

Theimplicit

The paralée

New Scheme

0.1 | 0.7048055 | 6.0x 107" | 5.2x 107 | 3.8x 107°° 6i1x 107
0.2 06384772 | 5.2x107°% | 4.1x 1077 | 3.7x 10°7¢ 1.3x 10~%
03] 05795403 | $.7%x 107" | 7.1x 107" | 4.6%x 107" 2.0x 107"
0.4 | 05275993 | &.0x 107" | é.a» 1::‘”' 5.5x 10™%¢ 2.8x 1077%
0.5 | 04821859 | 1.2x 107F | 8.9x 107°% | 2.2x 107 3.6X 107°F
0.6 | 04427977 | 1.1x 107 | 98x 107 | 1.0x 107" 4.5x 10~7%
0.7 [ 04089274 | 2.3 10°°F [ 1.4x 1077 | 1.1x 1077¢ 5.5x 10~
0.8 | 0.3800867 | Z.8x% 107" | 2.6% 107" | 1.0x 107 6.5x 107"
09| 03558213 | 5.8x 107" | 4.4ax 107 | 2.1 107°¢ 7.6x 107°%
1003357223 | 7.1x 107 | 6.4x 107 | 1.9x 107 8.7x 107"

Table 4: Resultsfor » = £.01at x = 1 for Example (3)

Exact Solution

Numerical solution

Absolute Error

0.1

-0.00681710750377

=(0.00681710779772

106X 107

0.2 =000e16E3743141d =0 ODE1lEE37418EVE L27 X 107
0.3 =0.00558137588787 =0 0055E13757€10¢8 L27 X 107
0.4 =0.0050502377474 =0.00505023762846 119X 107"
05 =0.00+5656550838¢ —0.0045564357464 109 % 107+
0.6 =0.0021327782552 =0 00213478485 477 993X 107
0.7 =0.00374130814210 =0.00374130805152 8.02 % 10™*
0.8 =0.00338527559937 =0.003385275517€8 817 X107
0.9 =0.00306312403268 —(0.0030€3123935874 739X 107
10 =0.0027716292208¢ =0.00277162917354 EEI X107
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Table 5: Results for different Spatial lengths at t =1 for

Example (3)
Spatid Absolute Errors at Absolute Errors at CPU Timein seconds
length H ¥ =0.5 x=1.4
0.10000 S.68x 107 P 0.0310
0.05000 422x 107 : 0.0320
0.02500 2.83x 107 g 0.2040
0.01250 1.70x 107 Bx 107" 1.0300
0.00625 8.94x 10" 3RI = 6.9800
[5] M. Deghan, “On the numerical solution of diffusion
5 equation with a non-local boundary condition”,
ulx.t) =[xy -1} + oY) b (—t) Math. Prob. in Engg., 2, 81-92(2003).

where &=0.0144 [4, 9].

In Example (3) results computed are given in Table 4 and
Table 5. In Table 4 results are calculated for h = 0.01 = |
at x = 1 and for different values of t. From the table it is
clear that the analytical solution calculated by using the
scheme developed in this paper is good agreement with
the exact ones. Also the solution converges towards exact
solution ast increases.

In Table 5 results are given for t = 1 with h =1 = 0.1,
0.05, 0.025, 0.0125 and 0.00625 at x = 0.5 and x = 1. Itis
clear from the table that results for x = 1 are far better
than those a& x = 0.5 aso the method is third-order
accurate. CPU time taken for the new scheme developed
in this paper is also given in the table which shows that
the new schemeis very fast. .
This problem is aso solved by [2] with @lx.t) = = and
Y(x.t) == It is noted that the increase in the value of
calses moré accuracy.

4 CONCLUSION

It is observed that the results obtained using new scheme
are highly accurate as compared to those of other schemes
and the method developed is third-order accurate in space
and time as well as L-acceptable. This technique can be
coded easily on serial or parallel computers.

It is worth mentioning that the method using real
arithmetic and multiprocessor architecture especialy in
multi-dimensional problems will save remarkable CPU
time rather than the complex arithmetic based methods.
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